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ABSTRACT

Streamlined shapes,both two-dimensional and axisymmetric~are

analytically expressed by appropriate polynomials in terms of in-

dependent parameters. Permissible ranges of the independent para-

meters are examined with respect to selected geometrical constraints.

ADMINISTRATIVE INFORMATION

The work described in this report was sponsored by the Naval Ordnance

Systems Command (Code 054131) and funded under UR 109-01-03.

INTRODUCTION

Streamlined bodies may be defined as those bodies with negligible

drag due to separation of flow on the tail. Since separation is a vis-

cous flow phenomenon, its occurrence is governed by the Reynolds number

of the flow past the body. In fact at extremely low Reynolds numbers

all bodies are in effect streamlined since they suffer no separation.

Howeverfor the higher range of Reynolds numbers of practical interest,

it has been experimentally recognized that elongated bodies, that is,

bodies with rounded noses and tapered tails, act as streamlined shapes.

In this respect the terms elongated bodies and streamlined bodies have

often been used synonymously even though some elongated bodies have

proved to be poor streamlined bodies.

A general system is developed for analytically defining and deter-

mining the suitability of shapes for use as streamlined bodies, both two-



dimensional and axisynmietric. Rounded, pointed, cuspedand flat faced

ends, with and without parallel middle bodies, in any combination of

forebody and ofLerbody are included. Known streamlined shapes may be

fitted into the system by least-squares fittings. Polynomial expres-

sions are used which lend t emseixes most readily to automatic compu-

tation.

The shapes of elongated bodies have been devised by potential flow

i
methods such as source-sink distributions in order to obtain knowledge

of the flow field such as the pressure distribution on the body. However,
2

modern methods of numerical calculation by high-speed computers pro-

vide pressure distributions for bodies of arbitrary shapes quite readily

so this aspect is no longer a prime consideration.

The devising of streamlined shapes has had its 6reatest impetus

from the development of aircraft wings for two-dimensional figures and

oc dirigible bodies for axisymmetric figures. Analytic expressions

were first used for defining shapes from which pressure distributions

were determined. it was then decided to start wiith what Wei considered

suitable pressure distributos and determine the shapes afterwards. The

results are tables of offsets as given by the NACA airfoil series for

two-dimensional figures and by Youi, anu Young for bodies of revolu-

tion with rounded noses and pointed t Is.

Since both the pressure distribution and the axial distribution of the

offset of the body control the boundary-layer development leading to

1References are listed on page 83.
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separation, the specification of pressure distribution alone does not

ensure the best streamlined body per se. Thic approach of this paper is

to specify the geometrical shape of families oi bodies whose hydrodynamic

suitability can then be determined by further analysis such as that of

the boundary-layer development.

A notable family of streamlined bodies of revolution was developed

5
by Landweber and Certler which have rounded noses and rounded tails."Qua-

dratic" polynomials are used in whi, h the square of the radial offset

is a polynomial function of axial distance. What is significant is that

independent polynomials are related to the independent parameters deter-

mining the shape. This technique was presented earlier by Admiral David

6
Taylor in his studies of the mathematical description of ship hulls.

The method of factorial analysis is also used by Landweber and Gertler

for determining the coefficients of the independent polynomials. In

addition the limiting ranges of suitability of the independent para-

meters are analyzed by an envelope technique which was also previously

6
described by Admiral Taylor. The "quadratic" polynomial developed

from delineations of dirigible shapes and is presented in a primitive

form by Lyon.

The "square root" polynomial consists of an ordinary polynomial

with the addition of a square root term to accomodate rounded noses.

It was used in the specification of the 4 & 5-digit series of airfoil

8,9I0,i
sections by NACA and by Kwik 10 11 for rudder sections.

The method of this report follows in part the technique of Land-

5
weber and Gertler with the initial difference of dividing the body

3



into a fore body and a[ter body aid then nonuaiizing the coordinate

system. The result is that there are only two independent parameters

remaining to consider fot the same degree of generality. Also both

the "quadratic" polynomial and "square root" polynomial are subjected

to the analysis by division into independent polynomials; the factorial

analysis, where allowable, for determining the coefficients of the in-

dependent polynomials; and the envelope analysis for estoblishing the

range of values of the independent parameters for suitability as desir-

able shapes. The results are analytical expressions for the cases of

rounded, pointed, and cusped ends, with and without parallel middle

bodies, in any combination of forebody and afterbody. The suitability

requirements are presented or, charts giving permissible ranges of the

two independent parameters. If there were more than two remaining

independent parameters, such a simple display would not be possible.

The special case of the flat faced nose with hydrodynamic continuity

is finally analyzed by a "cubic" polynomial.

4



GENERAL ANALYSiS

The shapes of families of bodies of revolution and of two-dimen-

sionLal synmnietrical bodies may be sLated functionally as

j = 1, 2,

where Y is the radius of the body of revolution or the offset of the

two dimensional body,

X is the axial distance of the body measured from, the nose

a i are the parameters; to be varied which specify the family such

as length 1, , maximum diameter or thickness D , etc., and

j are the boundary conditions or restraints which give desirable

contours such as closed body conditions Y 0 at X = 0 and

at X = L , etc.

The complexity of the analytical analysis is greatly reduced by con-

sidering the nose and tail portions separately in a normalized coordinate

system (:,y): y = 0 at x = 0 and y = I at x = I . For the curved

body the split into forward and after bodies is made at the position of

maximum radius or thickness. For the parallel middle body the cuts are

made at both ends of the parallel portion of the body. For the flat

faced body an additional cut is made at the edge of the flat face.

For the completely curved body, ii the axial distance to the maximum

section is X , then the normalized coordinates becomem



2Y

x for the forward portion [3]f

and

X L- X for the after portion [4]Xa L X---
m

For the parallel middle body, if X and X are the X-coordinates
TIt

of the end of the nose and the beginning of the tail respectively, then

the normalized coordinates become

2Y [5]

x X for the nose [bjxnand

1 -X for the tail [7]
t

For the flat faced body the normalized coordinate y becomes

2Y - f

D - Df [8]

where Df is the diameter or width of flat face.

To achieve "hydrodynamic continuity" as contrasted with mathematical

continuity it is only necessary that the position, slope,and curvature

match at the junction of the forward and after bodies. Since at the

junction y = 1 and d- = 0 , it is evident that the position and slope
dx

requirements are always met. The curvature condition however remains to

6



be satisfied. At the junction the curvature is given by d and in

2X

or

( m ) k [10]kf = 1- m ) a

where kf = curvature of forebody at x = Ift

k = curvature of afterbody at x = 1, anda

X

m - , relative axial position of maximum section.

For parallel middle bodies it is obvious that kf = ka = 0

In normalized coordinates the contour is given by

y = f(x;a t 1, 2, ...

j j= 1, 2,...

where cL and $j are now defined in normalized coordinates.

In this study only two independent parameters aI  and a2 are to be

considered for simplicity of analysis.

If a functional form like that of a polynomial is selected as

n=n

y = Z a ax = P (x) 112]

a resolution into linearly independent polynomials may be obtained like

7



that of linearly independent vectors such as

CL W, , x -i /, Pn,, (l 113]
i j

or

Y = r i Pn,i (X) -4 Q(x) 114]

where

Q(x) P n(x) 115]
n,

This permits the effect of the controllable parameters a1  to be

obtained independently of each other.

The independent polynomials may be determined by substituting con-

ditions ai and $. into the general polynomials and evaluating the

polynomial coefficients by a solution of the resulting simultaneous

algebraic equations and then by a gathering of terms. Another method

is to use the factorial properties of polynomials which is illustrated

in the specific cases to follow.

Not all variations of the a i produce desirable shapes. Conditions

for zero values, values of one, maxima or minima, and inflection points

may be investigated. For example the condition for zero values of y

y(x;aL 2) =0 , 0 x 1 i [16]

may be studied as follows.

8



If the Q I and a2 are now considered as variables and x as an

adjustable parameter, a line may be defined for each x . An envelope

to these lines may be developed which represents the boundary of regions

for values of a1 and o 2 with and without an additional zero value of

y that at x = 0 . The envelope condition is given by

--x Y 0.;1,12 0 [7

From Equations 116] and [17]

1 (x) [i8]

a2  f 2(x) [191

A plot of a1 against a 2 for the range of values of x

0 s x 1 i , gives the envelope curve.

9.1



"QUADRATC" POLYNOMIAL REPRESENTATIION

GENERAL

The functional relation

nan

y , 1 a 120]
n=

is to be called the "quadratic" polynomial for want of a better name. It

is very suitable tor describing bodies of revolution for which volume is

an important consideration since it represents the axial distribution of

the cross-sectional area. It has the additional advantage of providing a

means of accommodating the analytical description of bodies with rounded

ends; something the ordinary polynomial cannot do.

In addition to bodies with rounded ends the "quadratic" polynomial

may be applied to bodies with pointed ends and cusped ends. Of course

since the representations apply equally well to noses and tails, any

combination can be formed such as bodies with rounded noses and pointed

tails, etc.

Although any number of adjustable parameters ai may be used, the

analysis is to be limited to two as being sufficient for describing

suitable figures. Two adjustable parameters for each partial body in

the normalized coordinate system is equivalent to six adjustable para-

meters for the whole body in the natural coordinate system.

10



ROUNDLD ENDS

The adjustable paramctcrs oL arc

C ) r radius of curvature at x 0 r > 0
II

2121)

2

dy 2/x0

a'2 kl curvature at x k ,Lk) 0

1 22]

The signs of the equations for r and kI are chosen so as to require

r and k to be positive for desirable shapes.

The boundary conditions are

/I x = 0, y = 0

R2 ) .. 1 , y 1 ( 23]

3) x1=i
'63 'dx

Since there are five conditions in all, n = 4 j
The ai and R j are substituted into the polynomial, Differ-

entiating Equation [20] successively with respect to y gives

11



=I

2y = (a 2a 2x -f 3a x
2 

-1 4a X3 y [24]

and

2- (a + 2a x + 3a x2 4 4a x3  LX 4 (2a + a x 12a 1251
1 4 dy

dx

Since a, # 0 , - 0 at x - 0 . h11is automatically provides a

rounded end. Then

a1) a, = 2r

The other substitutions yield

a2  2a2 + 6a3 + 12a -2kI

B) a = 0
0 (26]

02) a° + al a3 +a 4 = 1

033) a] 4 2a2 + 3a3 + 4a4 =0

iiie UtLOrt 01 FLdlu11n [26 byJ LIV eL~it1idailLi-1U LL OLke

a's are linear functions of r and k1  hence y 2is also a linear

function of r and and may be written as

2
y r R(x) + k1Kl(X) + Q(x) [27J

where R(x) , KI(x), and Q(x) are also polynomials of the fourth degree

in x . It is possible to determine R(x) , K1 (x), and Q(x) by first

solving for the a's from the simultaneous equations and then regrouping

12



tern. apC i cab to 1()) " 1(. c), a1)d q(y) Anothcr mctilod is

developed in ReIe-'encc 5 by utilizi: g the faictorial proper-ties of

plynouiials as follow,,,s.

It is evident that ULe relations for 0 nd r( correspond to

d 2
Q1) () 2r

?

t4- (] = _ 211

x
yt y(0) =0 19

/32 ) y't = 0

d9
( 39 y(l) =

Since the foregoing apply identically to r and k, it is further

evident that

I R' (0) = 2 , K (0) = Q' (0) 0

a2 ) K" (1) = - 2 , R" (1) Q" (1) = 0

.1) (0) =,(0) = Q (0) = 0 [29]

Q (1) = 1 , R (1) = K1 (1) = 0

$3) R' (1) = Kl (1) = Q' (1) = 0

dR d 2R
where R' = d 2 etc.dx' dx2

Evaluation of R(x)

Since R(0) = R(I) = R'(1) = R"(l) = 0 and R(x) is a polynomial of

13



the fourth degree, R(x) may be written as

R(x) = ax (x - 1) 3  
[30)

Since R'(0 ) = 2 , a- 2.

Then

R(x) = - 2x (. -1)
3  

[31]

Evaluation of C. (x)

Since K (0) = K'(O) = KI(1) = Ki(1) = 0 ,K(x) may be written

factoriatly as

2 2 [2K1 (X) = flx (x - 1)[321

Since K (1) = -2 * fi= -1.

Then

Kl(X) - (x 1)2 [33]

Evaluation of Qkx)

Since Q'(0) = Q'(1) = Q"(1) = 0 , Q'(x) may be written factorially

as

Q'(x) = Yx (x - ) [34]

14



Then integrating

4329(x) [35]2x x4 2x + -2 + C 135]

With Q(0) = 0 and Q(1) = I , C = 0 and y = 12 . Then

2 2
Q(x) x(3x - 8x + 6) [36]

For rounded ends in sumary

2 r R(x) 4 k1 K1 (X) + Q(x) [27]

with

R(x) = - 2x (x - 1)3 [31]

2 2 [33]

Q(x) = x2(3x2 - 8x + 6) [36]

As a check let r = k = I which are the conditions for a sphere.

2 2 '
y = - x + 2x [37]

which is the contour of a sphere with center at x = i .

Graphs of R(x) , 1((x), and Q(x) are given in Figure 1.

15



Permissible Ranges of Parameters r and k

Not all combinations of r and k 1 give desirable shapes. Al-

though the fourth degree polynomial does not lend itself very easily

to peculiar shapes for positive r and kI , it is interesting to ana-

lyze the possible limitations in terms of simple criteria:

2
1. Zero condition. y =0 for 0 x 1

2
Negative values of y would be meaningless..

2
2. Unity condition. y = 1 for 0 - x I

Bulges above y = 1 are undesirable.

3. Maximum or minimum condition. dy = 0 for 0 x < Idx

No other maximum or minimun is to be permitted than at x I
2

4. Inflection point condition. -- 0 for U : x 1
dx

2

Inflection points are undesirable on noses.

Zero Condition.

2
y = f(x;r,k1 ) = 0 , 0 < x [ 1 138]

The envelope in r and k with x as the variable parameter is

given by

f = 0 [39]6x

The two envelope conditions, Equations [38] and [39], provide two

simultaneous equations in r and k which are solved by Cramer's rule to

give r(x) and k1 (X): 16



2.
x (x -2) (40)r =  3

(x - )

2

Sx - 4x+60 [41]
(x 2

The envelope curve is shown in Figure 2. Desirable values of r and

k are on the "inside curved" side of the envelope curve.

Unity Condition. The unity condition is that

y2 = f(x;r,k1 ) = 0 x - 1 [42]

The envelope in r and k with x as the variable parameter is

given by

Tx ( f  1) =0 [43]

The two envelope conditions,Equations [42] and [43], provide two simul-

taneous equations in r and k which are solved by Cramer's rule to give

r =1 + 1 [44]
x

k ( 1 [45]

17



Eliminating x gives simply

I = (2 - r)2  1461

The envelope curve is shown in Figure 2. Desirable values of r and

k I ,that is, without bulges, are on the "inside curved" side of the

envelope curve.

Maximum or Minimum Condition. The maximum or minimum condition is

given by

- f' = 0 [47]
dx

The envelope curve in r and k with x as the variable parameter Is

given by

f"= 0 [48]

The envelope curve is shown in Figure 2. A better understanding

of the envelope curve is developed in Figure 3. Each point on the

envelope curve represents a tangent giving the locus of values of r

and kI which provide a maximum or minimum at each value of x other

than the maximum at x = I which prevails at all times. Two such loci

are represented. Their point of intersection provides a value of r and

k1  representing maxima or minima at two values of x . Evidently from

any point in the region outside the envelope curve, two tangents may be

drawn to the envelope curve. Thus the region outside the envelope curve

represents values of r and kI giving two maxima or minima. The

18



region inside the envelope curve provides no maximum or minimum.

Finally there is only one maximum or minimum specified by the envelope

curve itself.

The two envelope conditions, Lquations [47] and [48], provide two simul-

taneous equations in r and k1 which are solved by Cramer's rule to give r(x) and

ki (x) as
62

r = 2 x[49]

6x 4x + I

kl 6(x - 1)2 [50]1 6x 2  
_ 4x 4 1

Inflection Point Condition. The inflection point condition is given by

2

dx
2

2For y = f (x)

2ff" - f2 = 0 [51]

and the envelope condition

f'"l 0 [523

The two conditions provide two simultaneous equations in r and k in

terms of x . Since the boundary condition leads to a quadratic relation,

19



Cramer's rule does n1ot al1y. For specified values of x the two siniul-

taneous equations may be solved by direct substitution of one equation

into the other. The results are slhown in Figures 2 and 4.

20



|

POINTED ENDS

The adjustable parameters a i are

I) s = slope at x = 0 , s 0

s =( =0[531

C2 ' = curvature at x = 1 ,k 0

dx21 x~ [54]dx 2

The sign of the equation for kI is chosen so as to require k to be

positive for desirable shapes.

The boundary conditions are

x 0 , y= 0

B2) x = 1 , y = 1 [55]

86) x1 dx o

Since the "quadratic" polynomial automatically gives infinite slope at

x 0 , an additional condition is necessary to give controlled slopes

at x = 0 . Hence the degree of the polynomial becomes five.

For a )

21



a. + 2ax + ... + na x
, 1 z ,, 156]

dx 2y

Since y 0 at x 0 , -. unless a - 0. For a, 0dx

is indeterminate at x 0 . Then by LrlIopitals Rule
dx

8

d- i x 0
x-O

or

2s =a 2

then requires that

a =0

[58]

2
a2 =s

The other substitutions yield

a2 ) 2a 2 + 6a 3 + 12a 4 + 20a =- 2k 1

M = 0 159fir) 80= [59]

32 ao + aI + a2 + a3 + a4 + a5

83) a1 + 
2a2 + 3a3 + 4a4 + 5a5 =0

2 2
y is then a linear function of s and k or

y = s 2(x) + k1Kl(X) + Q(x) 
[60]

22



LL is ( videCL LIlaL thec relations for a ana p cirrcspokid to

a) d- y 2 () 0

d 2 2 2

dx 2

a d'- y 2(1) 2k1
2 dx21

PI 2 (0) =0

p 2) y2 (1) =1

d 2

Since the foregoing apply identically to s and ,i it is further

evident that

a) S'(0) = Ki(0) = Q'(0) = 0

s'(0) = 2 ,K"(0) =Q"(0) =0

a K"(1) =-2 ,S"(1) Q"(1) =0 [2

flS(0) =K 1(0) = Q(O) = 0

02 Q(1) = 1 , S(1) = K 1 (l) = 0

3)S'(1) = Kj'(1) = Q'(1) - 0

Evaluation of S(x)

Since S(0) -S'(0) = SO1) S'(1) =S"(1) =0 and SWx is a

polynomial of the fifth degree, S~x) may be written factorially as
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2 3 1 6 3 1]

S3(x) = -. ( -) f) --

Sitce S"(O) -2 , a-l

lb en

S(X) 2 (x 3 [64]

Evaluation of K1 (x)

Since K1 (0 ) = Kj(O) = K''(0 ) K1(1) =K( 1) = 0 (,jx) may be

written factorially as

K((X) l jx3 (x - 1) 651

Since K(1) - 2 , =- 1.

Then

KI(X) = - (x - 1)2 [66]

Evaluation of Q(x)

Since Q'(0) Q"(0) = Q') = Q"(1) = 0 , Q(x) may be written

factorially as

2 )2 .
Q'(x) = (x [67]

Then integrating
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5 4 3
Q() ( - -+ - +c !68]

With Q(O) = 0 and Q(l) = 1 , C - 0 aud y = 30

1"hen

Q(x) = x3(6x - 15x + 10) 169]

For pointed ends in sumnary

2 2
y = S S(x) + klK(x) + Q(x) (60]

with

S(x) =- x2 (x - 1)3  [64]

() x3 (x - 1)2 166]
3 2

Q(x) = x (6x2 - 15x -+ 10) [69)

Graphs of S(x) , K1(x), and Q(x) are given in Figure 5
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2Permissible Ranges of Parameters s and k

Four conditions are to be applied: the zero condition, the unity

conditio, , the maximum coudition,and the inflection point condition.

Zero Condition. The envelope curve is specified by

2 s2
y = t(x;s k ) = 0 0 * x 1 1 [70]

'1

and

f' =0 [71]

The results are

.2_x'(3x-5) [2
s- [72]." (x -l) 3

ard

kl= 3x lox + 10 [731
(x- 2

The envelope curve is plotted in'Figure 6.

Unity Condition. The envelope curve is specified by
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f l 0 [74]

and

f 0 [75]

T'he relations are then

S2 3x 2+ 4x +3 [76]
S 2

3x 3-_4x 2- x + 2 [77]

The envelope curve is plotted in Figure 6.

Maximum or Minimum Condition. The envelope curve is specified by

V= -3 [78]

and

ft= 0 [79]

The results are

2 30X2
S 2 [80]

lx- lOx+ 3

and
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k 30(x - 1) 
181

I 2~ [81
lOx lOx + 3

The envelope curve is plotted in Figure 6.

Inflection Point Condition. The enevelope curve is specified by

2ff" - fV* 0 [82]

and

fil 0 . 183]

2

The variation of s with k1 is obtained numerically by direct sub-

stitution in solving the nonlinear simultaneous equations of thE

envelope curve.

For x 0 an indeterminate condition exists. By L'Hopital's Rule

2 y - 3s - k I + 10
dx 2 )=0 1 [84]

and

33(1s 2 +9k -70)

--y [85]
dx3 s

The boundary curve at x - 0 is then
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dx2

or

-J 3s2_k + 10 =0 [87]

The point Of tangency at x = 0 is given by Equation [87] and

S-? 1 =0 or 15s 2+ 9k -70 0 088
dx 1[8

Then

s2=5and k, = 5.[9

The envelope curve is shown in Figures 6 and 7.
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CUSPED LNDS

The adjustable parameters a are

a) kc =curvature at x0 , k 0

2
k 2 [t x = 190)

dx

aL2) k = curvature a t x 1 I k ~0

2
k, Al =,[911

dx2

The boundary conditions 8. are
J

8) x =0 ,y =0

/ ) x =0 ,y d 0=
P2) X dx

[92]
133) x=1I , y=l1

3~ x1 y
x ) , = 1

dx

As will be shown the cusped end requires two additional conditions which

makes n = 7 .

For RI3 a =0

For 82:

I+ 2a2x + 3a3x2 + ... + na x-l
2 3 n[93)

dx 2 (ax+ax + .. + axn)
1 2 n

y 0 at x = 0 , a, = 0.

dx
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211, 4 3a 5, 2

Then - [94]

2 (n 2 4 a3X4 ... 4* 81X')

( jd 0 -R-2' [95]

Fur (
-
x> .O 0 2 =0. (96]

For aI :

d ax.- 12ax
2 

- T. (n- I)A - [

dx
2  2y

n-2 2 2 3 n-1 2Oa3x + 12a 4 
X
2 + n(n 

x  
(a 43x2 4 4 a4 + n anx,.. - 4* 4 4X + .. * 0

[98]

2(a3x + a4 x + + ax )" 4(a 3 x3 + a4 x 4 . -xn)
3 / 2

2 n-2 3 4 r2 3 nl-' 2
2[a 3 x + 12a4x + ... + n(n- )anx) (a3 x + ... + ax) - (3a3x

2 
+ 4a4

x  
+ ... + na n x

4 (a3x3 + a4 x 4 + . anxn)3/2 [99]

n-3 n-3 n-2 2
2[6a3  12a 4 x + ... + ( - 1)a nx (a3  ax + .. + + ax ) - (3a3 + 4a 4 x + ... + nian x

[100)
4 a 3 + .a 4 n-8/3 ) 3/2

At x= 0 
d Y

dx2

Let a . 0

2 2[112*4 4 20ax . . + n(n - U)anXn 43(a 4 + a5 x ... + anx ) - (4a4 + 5asX + +.. tnanxl 32

dx2 4(a4 + n-4)i/!

... +
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At x - 0

2
iL-2a 1 102]

dx 2 4

4a4 = k 2 (103)

The other substitutions yield

a2 12a 4 + 20a 5 + 30a = Ik

t3 a + a + a6 = 1 (104]

3' 4 5 6

)4: 4a 4 + 5a 5 + 6a 6 = 0

2 2
y is then a linear function of k and k

2 2
y 2 k= K(X) + k I K1 (x) + Q(x) [105]

It is evident that the relations for aL and 1j. correspond to

d 3  2 (0) = 0
dx3

d 2 2
d y2 (0) = 6k

dx
4  0

d2

,2 d y2(1) = - 2k
dx2

[1061
v2

d 2 (0) = 0

d 2
2 x (0)0

d 2d2 y (0) = 0

dx2
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dy-(1) =0

04' d,

Since 0hc foregoing apply identically to k 0and k , it is

further evident that

a) K0 (0 Y (0) =Q (0) = 0

K iv(0) 6K (0)-Q(o) C)

a 2 ) K" (1) = 2 K " (1) Q" (1) 0
2 1 0

131B) K 1(0) = Q(O) =0[1 
7

2 K 0' (0) KIT (0) = Q, (0) = 0

K" (0) =K (0) =Q11(0) =0

3) Q(l) = 1;K (1) =K() 0

~) K' (1) K= (1) =Q (1) =0

Evaluation of K (xW

0

Since K. (0) =KO '0 =Ko ( 0)=KK"()= 1 K' (1)

K "(1) = 0 and K (x) is a polynomial of the seventh degre x
00 ,re .0 X

may be written factorially as

K. (x) acx (x- ) [108]

Since KV (0) 6 , ~=-1/4.
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r

Then

K(x) - - x4 (x - 1)3  [109]

Evaluation of KI(X)

Since K 1(0) - K1' (0) = KI"(0) = K1 lit (0) - KIiv (0) Kl(l) =

I'(1) - 0 , KI(x) may be written factorially as

K 1(x) 8x5 (x - 1)2  [II0]

Since K1 "(1) 2

Then

5 2
K(x) =-x (x-l) [ll]

Evaluation of Q(x)

Since Q'(0) = Q"(0) = Q'(0) = Qiv (0) = Q'(1) = Q"(1) 0

Q'(x) may be written factorially as

Q'(x) yx4 (x- 1) 2  [112]

Then integrating

7 6 5
3 +  + c[113]

With Q(O) =0 and Q(1) 1 ,C 0 and y =105.
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Then

Q(x) - x5 (15x 2 
- 35x - 21) [114)

For cusped ends in summary

y k 2 Ko(X) + k K(X) + Q(x) [105)

with

Ko(x)- x4 (x -1) 3  [109]

5 2Kl) I W x 5(x - ) 2[111)

Q(x) x (15x - 35x + 21) [114]

Graphs of K (x) , K (x), and Q(x) are given in Figure 8.

Permissible Ranges of Parameters k and k I a I.

As before four conditions are to be applied: the zero condition,

the unity condition, the maximum and minimum condition,and the inflec-

tion point condition.

Zero Condition. The envelope curve is specified by

f 0 [115]
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and

f= 0 [lL6]

The results are

k 2 4x2(5x- 7) [117]
(x-

and

=ox 2 
- 28x + 21 [118]
(x - )

The envelope curve is shown In Figure 9.

Unity Condition. The envelope curve is specified by

f - =0 [119]

and

f= 0 [120]

The results are

2 4(5x 4 + 8x3 + 9Y2 + 8x + 5)
k0  [121]

x4

and

k lOx - 8x -5x 3 -2x 2 +4 [122]
x
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Mhe envelope curve is shown in Figure 9.

Maximum or Minimum Condition. The envelope curve is specified by

V = 0 [1231

and

f" =0 [1241

The results are

k 2= 420x2  [125]
21x 2 

- 28 x + 10

and

210(x - 1)2 [126]
21x - 28x + 10

The envelope curve is plotted in Figure 9.

Inflection Point Condition. The envelope curve is specified by

2ff" -V f2 =0 [127]
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!I

and

' f 0 [128]

Ihe variation of k with k is ootained numerically by direct

n,.bstitution in solving the nonlinear siiltn~ous equations of the

enivelope curve.

T'he results are shown in- F,,are 10. The various regions giving the

number of inflection points are delin~eated in the same figure.
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"SQUARE ROOT" POLYNOMIAL REPRESENTATION

GENERAL

The functional relation

n=n

y a Xk + I a n x n[129]

is to be called the "square root" polynomial for want of a better name.

It is suitable for describing two-dimensional shapes with rounded ends.

Of course without the square root term an ordinary polynomial

remains.

The same analysis procedure used for the "quadratic" polynomial is

to be applied where possible to the "square root" polynomial for the

same cases: rounded ends, pointed ends and cusped ends.

ROUNDED ENDS

T e adjustable parameters ai arc

a.k) r = radius of curvature at x 0 , r 0

r = + 9 [1301

dy 2

CL) k = curvature at xl, k 0

2 1 1

ki E- 1=1[131]
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The signs of the equations for r and k I  are chosen so as to require

r and k to be positive for desirable shapes.

The boundary conditions 6 are

I )  xO , y 0

82) x = I , y = 1 [132]

83) x l=1,d

3 dx

Since there are five conditions in all, n = 3

The Li and 8j are substituted into the polynomial. For ct :

Differentiating Equation [129) with respect to y gives

= (-a- x + a + 2a x + 3a xy [133]
1 2 3 dy

or

dx [134j
dy a + aIx + 2a2x 3 + 3a3x 5

At x 0 , = 0 which ensures a rounded end. Differentiating Equation
dy

[133] with respect to y gives

o ~ ~~ -3/2 +) 2a +x 6 2 + (4a~c 2ax 3 2
(-ax2 + 2a2 + 6a + a1 + 2a x + 3ax [135]

2 3 y k 2 3 dy

or

( a + alx + 2a x3/2 + 3a x 5/2 )(4a + aIxk + 2a2x3/2 + 3ax 5/2) 2

d2x =a 2a2x 3 / 2 
- 6a x5 / 2

dy
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At x = 0

2r -- a

or

a V= r-r

a2 )  --ta + 2a 2 + 6a =- k I

a 2-- 0

[137]
B2 ) + +al + a 2 + a3 =

04) a + al + 2&2 + 3a 3  0

The presence of the square root term prevents the use of the factorial

analysis.

The solution as simultaneous equations in the a's produces

y '-- R(x) + k KI (x) + (x) [138]

with

R(x) = /- (3x - lOx + 15) [139]

K 1 (x) = - x (x - 1)2 [140]

Q(x) = x ( 2 - 3x + 3) [141]

Graphs of R(x) , l(x), and Q(x) are shown in Figure 11.
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Permissible Ranges of Parameters r and k

For the same reasons os the "quadratic" polynomial the conditions

to be considered are the zero condition, the unity condition, the

maximunM or minimum condition,and the inflection point condition.

Zero Condition. The envelope conditions are

y = g(x;r.k I) 0 0 x 1 1 [142]

and

= 0 [143]

The results are

4'-2r =2(y. - 3)
= /[144]

5x " 1 / 2  x -3 +x 5

and

-1/2 1/2 -3/2 2
k 36x + 20x + 12x + x -12x + 15 [145]kI  -1/2 -_3/2 15

2(x - 1)(5x- / 2  X + x - 5)

The results are plotted in Figure 12.

Unity Condition. The envelope curve is specified by
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g-1= 0 [146]

and

= 0 [147]

The results ate

S-- 2(x( - 1) 3

1/2 3/2 3 2[148]
-x +5x +x -5x

and

ki (x - 1)(4x "1/2 + 20x 1 /2 + x - lOx - 15) [149]

2(-x1/2 + 5x
3 / 2 + x

3 
- 5x )

The envelope curve is plotted in Figure 12.

Maximum or Minimum Condition. The envelope curve is specified by

0 [150]

a rid

0 [1511

Then
24(x - 2 x3/2

+2rx _ 5/2 3/2 [1521
1 - 12x 4 15x

2  - 3bx 4 20x

and
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1 1 1 A 5x/2 5/2 3/2 [153]
I - 12x 415x2 + 12x

7  - 36x 5  + 20 x 3

The envelope curve is plotted in Figure 12.

Inflection Point Condition. The envelope conditions are

= 0 [154]

and

g 0 [155)

The results are

5/2 [156]
dx5 /2 - 5x + 2

and

kl = 2(2x 5 / 2 
- 5x + 3) [157

8x 5 /2 - 5x + 2

The envelope curves are plotted in Figures 12 and 13.

POINTED ENDS

The ordinary polynomial is utilized

11'-:t

y a x [1581

44



The adjustable parameters a are

a1)s = slope at x = 0 , s 0

dx (y )=0 1159]

a2) ki = curvature at x = ik 0

2

k d - [160]
dx

2

The sign of the equation for k is chosen so as to require k1  to be

positive for desirable shapes.

The boundary conditions 0. are

Sx= , y=0

R2 ) x = 1 , y 1 [161]

b$) x =1, d-_d

3 'dxI

Since there are five conditions in all, n = 4

Substitution of a i  and 0. into the polynomial produces

II

a1 ) a1  s

a 2 ) 2 2 + 6a3 + 12a4 I

R1 ) a =0 [162]
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70

2 a0 + a1 + a 2 + a3 + a4

/ 3) a I + 2a 2 + 3a 3 + 4a 4  0

y is a linear function of s and k I or

y(x) = s S(x) + k I K1 (-x) + Q(x) [163]

The relations for aI and 8j correspond to

a1) y'(O) = s

a 2) y"(1) = - k

#I y(O) 0 [164]

2 y(1 =

P3) y'(1) - 0

It is evident that

1) s '(o) 1 ; K(0) = Q'(0) = 0

2 ) K"(1) = - 1 ; S"(1) = Q"(1) = 0

A S(0) = K(O) = Q(O) = 0 [165]

2 Q(1) = I ; S(1) = KI(1) = 0

93) S'(1) = K{(1) = Q'(l) = 0

3
Since S(0) = S(1) = S'(1) = S"(1) = 0 , S(x) ax(x - 1)

Since S'(0) 1, a 1- and

S(x) = - x(x - 1)3  [166]
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Since KI(0) -K(O) K1i K() K{(1) = 0 , K1 (x) = - 1)

Since K,(1) = - I , = and

K (X) = 2 (x - 1) 2  [1671

2
Since Q'(0) = Q'(1) = Q"(l) = 0 , Q'(x) yx(x - 1)

Since Q(0) = 0 and Q(1) = I , y = 7 and then

Q(x) x2 (3x2 - 8x + 6) [168]

In summary for pointed ends

y = S S(x) + k1 Kl(X) + Q(x) [163]

S(x) = - x(x - 1)3  [166]

2 2[17K(X) = - (x - 1) [167]

Q(x) = (3x2 - x+ 6) [168]

The polynomials are plotted in Figure 14,

Permissible Ranges of Parameters s and k

Four conditions are to be considered: the zero condition, the

unity condition, the maximum or minimum condition, and the inflection

point condition.
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Zero Condition. The envelope curve is specified by

g=0 [169]

ani

S 0 [170]

The results are

2x 2 (x - 2) [171]

(x 
3

and

2
2(x - 4x + 6)172]

(x - 2

The envelope curve is plotted in Figure 15.

Unity Condition. The envelope curve is specified by

g - 1 = 0 [173]

and

= 0 [174]

48
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The results arc

s = 2(1 + 1) [175]
X

and

kI = 2(1 - ) [176]
x

The envelope curve is plotted in Figure 15.

Maximum or Minimum Condition. The envelope curve is specified by

= 0 1177]

and

"= 0 [178]

The results are

12x 2  [179]

6x- - 4x + 1

and

ki =12(x - 1)2  [80]
6x6- 4x + I

The envelope curve is plotted In ligure 15.
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Inflection Point Coaditiou. The clivclopt, cuivc is spccit icd by

0 [181]

and

g ' =0 182]

T'he results are

4(3x - 3x + 1) 1183]6x2 -8x + 3

and

ki 12(x - IL 184
k . . i[184]

Ox 2 
- 8x + 3

For x = 0 the boundary line given by g" - 0 is

6s + k- 12 = 0 . [185]

The envelope curves are shown in Figures 15 and 16.

CUSPED ENDS

The ordinary polynomial is utilized
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YI

Iu=It

Tie adjusLabli pacacrs c arc

a j)k = curvature at x 0 , k 0

ko d ( [187]

dx 2

x'0 , y= 0

) x-- I189)

2) x 1

Substitution of a and 13.i into the polynomial produces

a) 9a, = Ia+K ~-2a=
02 2,46 3 +1a4 +2a5 k1

/3) ao =0 1190]

s1



3 + a4 a + a + a 5 43 o 1 2 3 4

p9 a -4 2a2 4 3a3 -t 484 4 505 =0

is a linear fun.ticn of k and k, in

y(x) ko KC (x) + k1 1 (x) - Q(x) [191]

The relations for ai and correspond to

C) y" (0) =k 0

Y) 2 y"(1) - - k

,81) y(O) 0 11921

02) y'(O) 0

03) y(l) =1

P4) y'(1) 0

It is evident that

(0) = 1 ; k "(0) = Q"(O) 0

K,( = Kl 1 Ko"() 0 Q") M 0

K (0) = '(0) = Q(O) 00, Ko [193]

a I

92 )  K' (0) :K I (0 = Q'(o) = 0

fl3)  Q(1) = 1 ; Ko0(1) 
= K()

= 0

) K '(1) =K '(1) =Q'() =9
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Since ; (0) = (0) 0) = K ) K '(1) - K0
0 00

K (x) = ax - 1)- 1194]
0

Sillcv Kl "(0) a c and

K (x) = kx2(x - 1) [195]
0

Since K1 (0) = 11 (0) = Kl"(0) = 1, (1) = K1 (1) = 0

Kl(X) = ONx3(x - 1)2 [196]

Since K1 '(1) = - 1 , - and

'1 3 2

K1 (x) = - 2x (x - 1) [197]

Since 4(0) = Q"(0) = q'(1) = Q"(1) = 0

Q'(x) = YN 2(x - 1)2 [198]

Since q(U) 0 0 ard QUl) = 1 ,y = 30 and

Q(x) = x 2 -- iSx + 10) [199]

In summary
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y V I(x) " k1 K(x) .. Q(x) (191]

2, 3
(x) %x-x - 1) (195)

3 2 2
I1(X) X 3 (X - 1) 2 197]

Q(x) = x 3(6x - 15x + 10) [199]

These are plotted in Figure 17.

Permissible Ranges of Parameters k and k1

Four conditions are to be investigated: the zero condition, the

unity condition, the maximum or minimum condition, and the inflection

point condition.

Zero Condition. The envelope curvr Is specified by

g = 0 [200]

and

g'= 0 [201]

The results are

k = 2x2 (3x - 5) [202]
0 (x-

and
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I(-(V lox iv 12031(x - )

The euvelope curve is ploLted in I igurc 18.

Unity Condition. The lcvelopc curve is specified by

g- 1=0 1204)

and

g' --0 12051

The iesults are

k 2(3x2 + 4x + 3) 206
02

x

and

- 2(x - l) (3x -4 2) 1207]
2 2

The envelope curve is shown ir, Figure 18.

Maximum or Miniimuit Cjn..ition. The envelope curve is specified by
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- C [208]

and

" 0 29]

The results ore

20xk =,O 2 20

lox- - lOx 4 3

and

60(x - 1) 213
lOx 2 - lOx + 3

The envelope curve is plotted in Figure 18.

Inflection Point Condition. The envelope curve is specified by

g" 0 [212]

and

g" =0 
[213]

The results are

k 20x 2(Ox 2 8x + 3) [210i
20x 4 + 40X 3 _-28x 2 + 8x- 1

56



I
I, v2x 3 -4 - x24_ flN i57

1 -2Ux i - 40x - 8x' -i 8x I

VIC cn' cIopc curve IS s lhown 111 1 Lgilrc 19.
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ULP 1 1%. V)h %"\ 1 I AlI fR ,1 .S .N !Ai

FOR -,Ai !A LD NU 1.S

I o h IVVL I d io dynan:itc c Lt I nut y" uL ( lL CCge I l .LI t I d.

IdLa'J UosC, Zuto CurViLie iz: rcq.ilfud In dddIL10l LO ufllIt slop .

A "cubic" p1 VlIIo.MI di a Lh ve L c s , nab m i y

3
y P(x) a - a I a.)' i aI x m . ..

Since'

dx 3v-
dy a- 2a 2 x 4 3ax' 4

and y 0 1u : =L

0 (infinleC slope) 1218]4= 0

Also since

dx"2

2 6y - (2a -4 6a3 x 4 d..) x 2

- 2 3 \ I7 2

dy- a t + 2a2× 4 3a 3 -

and a1 v 0

9

( =0>= 0 (zeio curvature) r220]dy 
2  Xo

There is one adjustable parameter a
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ax k1 " cuIvatutI a. K 1  0

dx

Lh Lou d ,: ' .! (1i t o u ' j . IL

/ =' I , y, 1 (02

x=] =0xdx

."Into there arc lour Lc'Jdit iorvi in oi the polynomia ni n x is

uLb I c.

The a nvid ar c suOstI itLcd int o the pol)no0111.1 to givC

0L1 6~Z. a - 3K
-t1 2. - O 3 I k

3 2 3

The fourl of thc "Cubic" pon plonial is ten

-k 1 Q x)

The relations for cL a ud f.coriespo'nd to

0. 3

o.1 -.. . (',) - 3k1

d x 
" 

5
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qU

flp y (0) = 0

f3) y (1) = 2

f13) y(1.) = o

Also it is evident Ihat

' (1) - 3 "(1)

P 1Z 1(0) = Q(O) =0 [226]

3 Q(1) = 1 , K (1) = 0

$3) K{(l) = Q'(1) = 0

Evaluation of KW(x)

Since K1 (0) K{(i) K1 ( 1 ) 0

Kl(X) = ax(x -- 1)2 1227]

Since K(l) =- 3I, a=(1 3 Then

K1 (x) =- xx- 2) [228]
K (x) 2 x(x _1)2 28

Evaluation of Q(x)

Since Q"(1) = Q(1) = 0

Q' = #(x - 1)2 [229]
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and

3__ c [2301
3

Since Q(0) = 0 and Q(1) 1 , = 3 and C = I

Q = (t -
1231]

The independent polynomials are plotted in Figure 20.

Permissible Range. of kI

Zero Condition.

3
y (X,k) 0 , 0 -x 1 [232]

The boundary condition h = 0 gives

3

k I L~x - 1)~ + LI [2331
3x(x- I)-

For x = 0 , k I is indeterminate and by L'Ilop!tal's Rule

k 1 = 2 
[2341

Fro1 the plot of kI against x in Figure 21 it Is evident that the

permissible range is
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k 2 [235]

Unity Condition.

h(x,k) - 1 0 x 1 [236]

The bouindary condition is then

h =1 1237]

The n

kt = 2 1 -- [2381

From the plot of k I against x in Figure 21 it is evident that the

permissible range is

k 0 [239]

Maximum or Minimum Condition.

> 0 0 X < 1 [240]dx , -

except at x I . Then

<0 [241]
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Thu bound ai y (.Oild I L I on I thLenIC1

=0 Y22

whlichi prodmus

1 3(x- 1243]

Froil t10 plotA Of k 1againstL X in igre2t it IS eVident iia L the

permissible range is

0 k1 1244]

Inflection Point Condit ion.

d v

or

3hh'' - 211' 0
5/f [246]

Fzar 11- 0 (positive ccnndition)

31ihi - 2Wi 2 [247]

which reduces to
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(x - k .+ 2(3x - 2)k1 = 4(x - 1) [248)

or

k 1 2 - 3x + x/"x - 3 [249
(x 1)2

The permi sible range is k, 0 and with the zero condition of kI S 2

the combined permissible range is

0 k 2 1250]

as shown in Figure 21.
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LEAST SQUARES JIT

GLNLRAL

Known shapes may be approximately expresscl in "quadratic"

and "square root" polynomials by a least squares fit. if

2
z = y for "quadratic' polynomialt.

or

z - y for "square root" polynomials

then in general

z = d D(x) + kI KI(X) + Q(x) [251]

where d and D(x) refer to the appropriate type of figure. For

example for a rounded nose shape d = r and D(x) - R(x) . Since

the whole body is to be fitted, both fore and after bodies are to be

considered which would mean determining four coefficients df , klf

dap and kla by a least squares fit. "1hie subscript f refers to

the forebody and a to the afterbody. Hlowever since k if and

kla are related by

( 22
kif - [252]klf I m kla e kla
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only tirce independent coecticients have to be detenined.

In geineral a least squares fit requires that

(7 - V 2dx be minimized [253)

where zI  represents the body shape to be fitted. Differentiating

with respect to the coefficients to be determined produces three

simultaneous algebraic equations which are easily evaluated:

I i I0,f 0f f fl f jdxf] df [ D K fdxf] k, j I D ox I D Q f[24

I x d+ [e 1S x k D z dx I DQ dx [254)

[LoDa 2  da + [e~oDaKladXal kl = oDaZadXa- Jo aaa [255]
1I~ 1 2 1

0 DfKifdxf] d f + [e K.dal d a + L 0o a e J1 2dxa] k,

[2561i 11 I 1

-o Klflff f+ ej 0ladla d oKlfQfxf joKlaadx a

BODIES OF REVOLUTION

In the normalized coordinates of this paper all ellipsoids

are transformed into spheres so that r = k I = I which is plotted

in Figure 4 for bodies with rounded ends.

An ellipsoid-like body was developed :y Munzner and ReichardtI2

which has an almost constant pressure distribution. The Reichardt body

is expressed as
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X i . - [257]

where a and b are the setniaxes and ii, normalized coordinates as

2 y2.4

(x - l) + Y = 1 [258]

For a least squares fit

I

2 I x(2 - x)] [259]

A least squares fit by rounded end "quadratic" polynomials gives

r 1.344

and

k1 = 1.085

which is plotted in Figure 4.

Other known bodies of revolution may be fitted and plotted in

Figure 4 for comparison.

TWO-DITNIS IOAL SDhAPESo

In normalized coordinates all ellipses have been transformed

into a circle
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F9

y - .s - x 20

and tor lea:;t square f[it ill

z (2x - x2) [261]

A least squares fit in "square root" polynomials for rounded ends

gives

, 2r = 1.425

and

k1 = 0. 926

which is plotted in Figure 13.

A long time favorite streamlined shape for propeller struts

was the Navy Standard Strut1 3 (NSS) which has a rounded nose and a

pointed tail. A least squares fit gives for the nose

,-F = 1.610

and

k I = 0.713

and for the tail
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s=2.082

k I  2.457

wh ich arc plotLCd In 1'lsurcb 13 Vind 1 .

The Navy Stanidard Strut waS sperscded I\ th l;Ill shape 1 3 I

Whiich hIs a rounded Lail. A least squaLires fit yields for the nose

port I on

- 1 414

and

k I  0.752

and for the tail portion

2r 0.389

and

k I = 1.124

which are plotted in Figure 13.
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Ijl f t jjt s kl a s b\ ic ,; I J . Iy LNI puIto fL , ci

wiiliii~ I:; tLhc ratA [01U thu vol ume Ol theC body toa thc VOl llme (if pr Isml

hay tll theC max !llull cjo.h s - sc c i0o 11-til and Oxe Icij 01tl oLI he boy

l'o, a body o1 revol ut ion OWk' prjIm is reprersentecd by a 0iincro

mjax imujjLlij di ;metetci lid length,0 0 I the bodY-

The pt i,,iiatic coe ftc tvit of the semibodies 0t thiS repoirt is-

givenl by

C y ydx 22

The prismatic coef f iC ietL of tile t,7c'le body is gi;ven by

C - C 4(I - M) Cf [203)

where the subscripts f and a refer to the forebody and afterbody

respectively.

The utility of the quadratic polynotaial in co.-mputing the pris-

inatic coefficient, is evident from

C = D W dx + kS K Or) dx + So Qdx I2641

For the rounded end

rp + [265]
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Figure 1-"Quadratic" Polynomial: Rounded End -Variation of
independent Polynomials
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Figure 2 -"Quadratic" Polynomial: Rounded End -Permissible

Range of Parameters r andk
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Figure 5 - "Quadratic" Polynomial: Pointed End - Variation of

Independent Polynomials
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Figure 6 - "Quadratic" Polynomial: Pointed End - permissible Range
2

of Parameters s and k1
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Figure 7 -"Quadratic' Polynomial: Pointed End -Inflection

Point Condition
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Figure 9 -"Quadratic" Polynomial: Cusped End -Permissible Range

of Parameters k 2and kI
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Figure 10 - "Quadratic" Polynomial: Cusped End - Inflection
Point Condition
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Figure 11 -"Square Root" Polynomial: Rounded End -Variation of

Independent Polynomials
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Figure 14 - Ordiary ot Polynomial: oned End InVariation 
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Figure 15 -Ordinary Polynomial: pointed End -permissible Range

of Parameters s and k1
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Figure 16 -Ordinary Polynomial: Pointed End -Inflection Point Condition
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Figure 17 - Ordinary Polynomial: Cusped End - Variation of

Independent Polynomials
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Figure 18 - Ordinary Polynomial: Cusped End - Permissible Range of

Parameters k and k1
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Figure 20 - "Cubic" Polynomial: Flat Face - Variation of

Independent Parameters
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